Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells.

نویسندگان

  • Marco J Russo
  • Hau-Jie Yau
  • Maria-Grazia Nunzi
  • Enrico Mugnaini
  • Marco Martina
چکیده

Neuronal firing is regulated by the complex interaction of multiple depolarizing and hyperpolarizing currents; intrinsic firing, which defines the neuronal ability to generate action potentials in the absence of synaptic excitation, is particularly sensitive to modulation by currents that are active below the action potential threshold. Cerebellar unipolar brush cells (UBCs) are excitatory granule layer interneurons that are capable of intrinsic firing; here we show that, in acute mouse cerebellar slices, barium-sensitive background potassium channels of UBCs effectively regulate intrinsic firing. We also demonstrate that these channels are regulated by group II metabotropic glutamate receptors (mGluRs), which we show to be present in both of the known subsets of UBCs, one of which expresses calretinin and the other mGluR1alpha. Finally, we show that background potassium currents controlling UBCs' firing are mediated by at least two channel types, one of which is sensitive and the other insensitive to the GIRK blocker tertiapin. Thus in UBCs, glutamatergic transmission appears to have a complex bimodal effect: although it increases spontaneous firing through activation of ionotropic receptors, it also has inhibitory effects through the mGluR-dependent activation of tertiapin-sensitive and -insensitive background potassium currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0306-4522(00)00123-8

Unipolar brush cells are a class of interneurons in the granular layer of the mammalian cerebellum that receives excitatory mossy fiber synaptic input in the form of a giant glutamatergic synapse. Previously, it was shown that the unipolar brush cell axon branches within the granular layer, giving rise to large terminals. Single mossy fiber stimuli evoke a prolonged burst of firing in unipolar ...

متن کامل

Resurgent Na currents in four classes of neurons of the cerebellum.

Action potential firing rates are generally limited by the refractory period, which depends on the recovery from inactivation of voltage-gated Na channels. In cerebellar Purkinje neurons, the kinetics of Na channels appear specialized for rapid firing. Upon depolarization, an endogenous open-channel blocker rapidly terminates current flow but prevents binding of the "fast" inactivation gate. Up...

متن کامل

Early onset of ataxia in moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje cell dysfunction.

Transient receptor potential "canonical" cation channels (TRPC) are involved in many cellular activities, including neuronal synaptic transmission. These channels couple lipid metabolism, calcium homeostasis, and electrophysiological properties as they are calcium permeable and activated through the phospholipase C pathway and by diacylglycerol. The TRPC3 subunit is abundantly expressed in Purk...

متن کامل

T-type and L-type Ca2+ conductances define and encode the bimodal firing pattern of vestibulocerebellar unipolar brush cells.

Cerebellar unipolar brush cells (UBCs) are glutamatergic interneurons that receive direct input from vestibular afferents in the form of a unique excitatory synapse on their dendritic brush. UBCs constitute independent relay lines for vestibular signals, and their inherent properties most likely determine how vestibular activity is encoded by the cerebellar cortex. We now demonstrate that UBCs ...

متن کامل

ON and OFF Unipolar Brush Cells Transform Multisensory Inputs to the Auditory System

Unipolar brush cells (UBCs) of the dorsal cochlear nucleus (DCN) and vestibular cerebellar cortex receive glutamatergic mossy fiber input on an elaborate brush-like dendrite. Two subtypes of UBC have been established based on immunohistochemical markers and physiological profiles, but the relation of these subtypes to the response to mossy fiber input is not clear. We examined the synaptic phys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 2008